Mathématiques en technologies de l'information

Calcul matriciel

Rappels de la géométrie vectorielle

Dans la géométrie en 3D, nous avons vu qu'une droite pouvait être exprimée comme un système d'équations du premier degré du type

$$\begin{cases} \alpha - \beta + 3\gamma + \delta = 0 \\ 3\alpha + \beta + 2\gamma + \delta = 0 \\ 3\alpha + 2\beta + \gamma + \delta = 0 \end{cases}$$

Représentation matricielle

Nous écrivons les variables dans un vecteur :

$$\vec{x} = (x_1, x_2, x_3, x_4) = (\alpha, \beta, \gamma, \delta)$$

Nous pouvons alors créer un tableau des coefficients de éléments de \vec{x} dans le système d'équations (en ignorant, pour le moment, la partie des égalités)

Représentation matricielle

$$\begin{cases} \alpha - \beta + 3\gamma + \delta = 0 \\ 3\alpha + \beta + 2\gamma + \delta = 0 \\ 3\alpha + 2\beta + \gamma + \delta = 0 \end{cases}$$

1α	-1β	3γ	1δ
3α	1β	2γ	1δ
3α	1β	1γ	1δ

Et en enlevant les variables, Pour ne garder que les coefficients

α	$oldsymbol{eta}$	γ	δ
1	-1	3	1
3	1	2	1
3	1	1	1

Représentation matricielle

Nous définissions une matrice, notée M, comme le tableau ci-dessous :

$$M = \begin{pmatrix} 1 & -1 & 3 & 1 \\ 3 & 1 & 2 & 1 \\ 3 & 1 & 1 & 1 \end{pmatrix}$$

Notez que M a 3 lignes et 4 colonnes.

Ceci est écrit sous la forme $M_{3\times4}$.

Produit matriciel

Nous noterons que le produit matriciel du système d'équations initial est donné par :

$$M \times \vec{x} = \begin{pmatrix} 1 & -1 & 3 & 1 \\ 3 & 1 & 2 & 1 \\ 3 & 1 & 1 & 1 \end{pmatrix} \times \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$$

$$= \begin{pmatrix} x_1 - x_2 + 3x_3 + x_4 \\ 3x_1 + x_2 + 2x_3 + x_4 \\ 3x_1 + x_2 + x_3 + x_4 \end{pmatrix}$$

ATTENTION : nous devons ici écrire \vec{x} sous forme de colonne !

Généralisation

Une matrice $M_{m \times n}$ est décrite comme suite

$$M = \begin{pmatrix} m_{11} & m_{12} & \dots & m_{1n} \\ m_{21} & m_{22} & \dots & m_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ m_{m1} & m_{m2} & \dots & m_{mm} \end{pmatrix}$$

Cas particuliers

Une matrice $M_{n\times n}$ est dite une matrice carrée,

Une matrice $M_{1\times n}$ n'est autre qu'un vecteur ligne,

Une matrice $M_{m \times 1}$ n'est autre qu'un vecteur colonne,

Une matrice $M_{1\times 1}$ est un scalaire.

Notez que le nombre de lignes et de colonnes doit être $m, n \ge 1$!

Opérateurs sur les matrices

ATTENTION:

TOUS les opérateurs sur des matrices n'ont de sens que si les tailles des matrices sont <u>cohérentes</u>!!!!

Addition matricielle

L'addition de deux matrices se fait décrit comme suit :

$$R_{m \times n} = M_{m \times n} + N_{m \times n}$$

$$\Rightarrow r_{ij} = m_{ij} + n_{ij}, \forall i = 1, \dots m, j = 1 \dots n$$

<u>Condition</u>: les deux matrices additionnées ont la même dimension!!!

Somme directe

Nous définissons également la *somme directe*, comme suit :

$$R_{(m+p)\times(n+q)} = M_{m\times n} \oplus N_{p\times q}$$

$$R = \begin{pmatrix} m_{11} & \dots & m_{1n} & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ m_{m1} & \dots & m_{mn} & 0 & \dots & 0 \\ 0 & \dots & 0 & n_{11} & \dots & n_{1q} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & n_{p1} & \dots & n_{pq} \end{pmatrix}$$

Multiplication par un scalaire

On peut multiplier une matrice par un scalaire :

$$R_{m \times n} = \lambda \times M_{m \times n}$$

$$\Rightarrow r_{ij} = \lambda \times m_{ij}, \forall i = 1, ... m, j = 1 ... n$$

Produit matriciel

Le produit matriciel se définit comme suit :

$$\begin{split} R_{m\times p} &= M_{m\times n} + N_{n\times p} \\ \Rightarrow r_{ij} &= m_{i1} \times n_{1j} + m_{i2} \times n_{2j} + \dots + m_{1n} \times m_{nj}, \\ \forall i = 1, \dots m, j = 1 \dots p \end{split}$$

<u>Condition</u>: les deux matrices additionnées ont la même dimension !!!

Pour le détails du produit matriciel, voir le fichier suivant sur le site du cours :

produit_matriciel.pdf